طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق طبقه بندی کننده ماشین بردار پشتیبان و میدان های تصادفی مارکوف
Authors
abstract
تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روش هایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده می کند، نسبت به روش های مبتنی بر فقط اطلاعات طیفی، دقیق تر می باشد. اگرچه طبقه بندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش ازدور می باشد ولی این طبقه بندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل می کند، که این یک محدودیت برای استفاده از آن می باشد. در این مقاله، تلفیق ماشین بردار پشتیبان با میدان های تصادفی مارکوف به منظور طبقه بندی داده های پلاریمتری رادار با روزنه مجازی از یک منطقه شامل گونه های مختلف جنگلی، پوشش گیاهی و آب براساس افزودن اطلاعات مکانی انجام می شود. به منظور انتخاب ویژگی های پلاریمتری مناسب و همچنین برآورد خودکار پارامترهای بهینه مورد نیاز، از الگوریتم ژنتیک استفاده می شود. به منظور بررسی عملکرد روش پیشنهادی، نتایج بدست آمده از این روش با نتایج تعدادی از روش های پایه در طبقه بندی تصاویر پلاریمتری و دو روش جدید به نام های amrf و msvc مقایسه شد. در نهایت طبقه بندی به این روش نسبت به روش های ویشارت، ویشارت-مارکوف، svm، amrf و msvc به ترتیب 19، 14، 11، 5 و 3 درصد افزایش دقت را نشان می دهد.
similar resources
ارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی براساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف
در این مقاله یک روش نوین طبقهبندی متنی به منظور طبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (SVM) و طبقهبندیکننده ویشارت عمل میکند. بدین ترتیب این روش از مزایای هر دو نوع روشهای پارامتریک و غیر پارامتریک بهره میبرد. در این روش، ابتدا تابع انرژی اولیه میدانهای تصادفی مارکوف (MRF) در یک همسایگی از هر پیکسل محاسبه میگردد. سپس با ...
full textطبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی بر اساس تلفیق طبقهبندی کننده ماشین بردار پشتیبان و میدانهای تصادفی مارکوف
تحقیقات اخیر نشان داده است که طبقه بندی تصاویر سنجش ازدور با کمک روشهایی که از اطلاعات مکانی در کنار اطلاعات طیفی استفاده میکند، نسبت به روشهای مبتنی بر فقط اطلاعات طیفی، دقیقتر میباشد. اگرچه طبقهبندی به روش ماشین بردار پشتیبان دارای نتایج دقیق در بیشتر تصاویر سنجش ازدور میباشد ولی این طبقهبندی کننده ذاتا بر مبنای فقط اطلاعات تک پیکسل عمل میکند، که این یک محدودیت برای استفاده از آن می...
full textارائه یک روش جدید برای طبقه بندی تصاویر پلاریمتری رادار با روزنه مجازی براساس تلفیق ماشین بردار پشتیبان و میدان های تصادفی مارکوف
در این مقاله یک روش نوین طبقهبندی متنی به منظور طبقهبندی تصاویر پلاریمتری رادار با روزنه مجازی ارائه شده است. روش پیشنهادی با تلفیق ماشین بردار پشتیبان (svm) و طبقهبندیکننده ویشارت عمل میکند. بدین ترتیب این روش از مزایای هر دو نوع روشهای پارامتریک و غیر پارامتریک بهره میبرد. در این روش، ابتدا تابع انرژی اولیه میدانهای تصادفی مارکوف (mrf) در یک همسایگی از هر پیکسل محاسبه میگردد. سپس با ...
full textطبقه بندی عارضه مبنای تصاویر پلاریمتری سار با استفاده از طبقه بندی کننده های چندگانه ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و دادههای مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این مقاله یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی svm و قطعات...
full textطبقه بندی پلاریمتری-مکانی تصاویر sar با استفاده از تلفیق طبقه بندی کننده های ماشین بردار پشتیبان
طبقه بندی پوشش زمین یکی از کاربرد های مهم استفاده از داده های سنجش از دوری است. از میان تصاویر و داده های مورد استفاده در این مورد، داده های پلاریمتری راداری به خاطر امکان استخراج ویژگی های زیاد و متنوع میتوانند برای طبقه بندی گزینه مناسبی باشند. در این تحقیق یک روش عارضه مبنا برای طبقه بندی مناطق شهری با استفاده از داده های پلاریمتری راداری به صورت تلفیق نتایج پیکسل مبنای طبقه بندی svm و قطعات...
بهینه سازی طبقه بندی کننده ی ماشین بردار پشتیبان با استفاده از آلگوریتم ژنتیک به منظور طبقه بندی تصاویر پلاریمتریک راداری
طبقه بندی تصاویر ماهواره ای یکی از متداول ترین روشهای استخراج اطلاعات از داده های سنجش از دوری می باشد. با ظهور سنجنده های مایکروویو امکان بهره برداری از اطلاعاتی متمایز از اطلاعات قابل استخراج از سنجنده های نوری فراهم آمده است. دلیل این امر امکان استفاده از ویژگی های متمایز طیف الکترو مغناطیس در محدوده ی مایکروویو است که توسط سنجنده های راداری قابل برداشت می باشد. در این بین تصاویر پلاریمتریک ...
full textMy Resources
Save resource for easier access later
Journal title:
مهندسی فناوری اطلاعات مکانیجلد ۳، شماره ۴، صفحات ۱-۱۸
Hosted on Doprax cloud platform doprax.com
copyright © 2015-2023